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Abstract
We propose the realization of custom-designed adiabatic potentials for cold
atoms based on multimode radio frequency radiation in combination with
static inhomogeneous magnetic fields. For example, the use of radio frequency
combs gives rise to periodic potentials acting as gratings for cold atoms. In
strong magnetic field gradients, the lattice constant can be well below 1 µm.
By changing the frequencies of the comb in time the gratings can easily be
propagated in space, which may prove useful for Bragg scattering atomic
matter waves. Furthermore, almost arbitrarily shaped potentials are possible
such as disordered potentials on a scale of several 100 nm or lattices with a
spatially varying lattice constant. The potentials can be made state selective
and, in the case of atomic mixtures, also species selective. This opens new
perspectives for generating tailored quantum systems based on ultracold single
atoms or degenerate atomic and molecular quantum gases.

1. Introduction

The availability of matter in a coherent state has renewed the interest in Bragg scattering with
massive particles. Various types of gratings have been developed based on arrangements of
two nearly degenerate laser beams [1, 2] or microfabricated structures [3]. These techniques
have drawbacks however: optical lattices are not flexible in the sense that it is difficult to
implement local variations or disorder, their geometry is frozen by the incident radiation of
a few laser beams and their lattice constant is limited by the wavelength of the employed
lasers. On the other hand, microstructured gratings are unalterable by their design, and they
are generally two dimensional.

In magnetic traps, incident microwave or radio frequency radiation can have a strong
impact on the trapping potential. This is due to the fact that the potential depends on the
magnetic substate of the trapped atoms. The energy of this substate can be manipulated by
admixing other substates via resonant radio frequency radiation. In inhomogeneous magnetic
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fields, this coupling is local and leads, within a dressed states picture, to avoided level crossings
[4]. Atoms moving across an area where the coupling is strong, follow adiabatic potentials by
avoiding the crossings.

This feature is, e.g., used for evaporative cooling, where trapped magnetic states are
coupled to untrapped states at certain distances from the trap centre [5, 6] and for certain
schemes of output coupling atom laser beams from trapped Bose–Einstein condensates [7].
Atomic traps based on avoided crossings have been proposed by Zobay and Garraway [8, 9]
and pioneered by Perrin et al [10]. Meanwhile double-well potentials have been built using
this approach [11], and resonators for atoms have been demonstrated [12].

In this paper, we propose to generate periodic potentials for atoms by combining
appropriate magnetic field gradients with the application of multimode radio frequency
radiation. As compared to optical or microfabricated gratings, gratings based on radio
frequency combs possess a number of advantages. They work for atoms with low- and
high-field seeking magnetic moments with a phase of the grating, which depends on the
atomic internal state. Furthermore, the technique allows for an almost complete control over
the spatial shape and the temporal evolution of the potentials. In particular, irregular patterns
may be formed, and very small structures, only limited by the size of the technically feasible
magnetic field gradient, may give rise to gratings with very small lattice constants. With
properly shaped magnetic fields almost arbitrary 3D potential geometries are imaginable. It is
even possible to design time-dependent shapes, e.g., to shift, merge or split individual potential
sites. The range of possible manipulations and applications seems inexhaustible.

We begin this proposal with a quantitative description of the basic mechanism in section 2,
where we suggest a very simple approximation for the adiabatic potentials, which holds when
the frequency components are not too closely spaced. To demonstrate the versatility of the
radio frequency technique, we discuss two examples. In section 3, we focus on the case of
a periodic potential (or grating). We estimate the smallest periodicity, which can be realized
using radio frequency combs, and discuss how to generate moving gratings in order to perform
Bragg scattering experiments and how to use the phenomenon of Bloch oscillations to probe
such a grating.

The second example, discussed in section 4, is a way of modifying the shape of a magnetic
trap using microwave radiation. In ordinary magnetic traps, atomic spin states with identical
Zeeman shifts experience the same confining force regardless of the mass of the trapped
particles. The possibility of designing magnetic potentials with arbitrary shapes provides a
useful handle to selectively manipulate mixtures of different species.

2. Simple theoretical description

We consider an atomic ground state with hyperfine structure having the total spin F. The
magnetic sublevels mF are split in an external magnetic field B by an amount µBgF mF B,
where gF is the atomic g-factor of the hyperfine level. An irradiated linearly polarized
radio frequency Brf cos(ωt) couples the sublevels |F,mF 〉 ↔ |F,m′

F 〉 with m′
F = mF ± 1,

wherever it is close to resonance, provided that the orientations of the radio frequency and the
magnetic fields are orthogonal. The coupling strength is given by the Rabi frequency [6]

� = µBgF

4h̄
|Brf × êB |

√
F(F + 1) − mF m′

F , (1)

where êB is the orientation of the local static magnetic field.
Alternatively, a microwave frequency can be used to couple different hyperfine levels.

However, the essence of the effect can be studied in the coupled system
∣∣ 1
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Figure 1. (a) Potential energies for an F = 1
2 level scheme with the g-factor of gF = − 2

3 (as is
the case for the 6Li ground state 2S1/2). A single radio frequency component (arrow) couples the
substates mF = ± 1

2 . Here b = 200 G cm−1 and ω = 2π × 5 kHz. (b) Uncoupled dressed states
(dotted line), coupled dressed states (solid) and dynamic Stark shifts (dash-dotted) calculated in
the off-resonant field approximation. The Rabi frequency is � = 2π × 700 Hz.

which we will focus in most parts of this paper. A generalization to multilevel systems F > 1
2

is straightforward. The dressed state Hamiltonian of our two-level system is a 2 × 2 matrix,

H(z) =
(

1
2µBgF B(z) − 1

2h̄ω 1
2h̄�

1
2h̄� − 1

2µBgF B(z) + 1
2h̄ω

)
. (2)

For simplicity we have also assumed a one-dimensional geometry, B = B(z), but it can easily
be generalized to three dimensions. The eigenvalues of H are

E±(z) = ± 1
2

√
h̄2�2 + [µBgF B(z) − h̄ω]2. (3)

Far enough from resonance, h̄� � |µBgF B(z) − h̄ω|, we get

E±(z) ≈ ±1

2
[µBgF B(z) − h̄ω] ± h̄2�2

4[µBgF B(z) − h̄ω]
, (4)

where the second term can be interpreted as dynamic Stark shift of the energy levels. To
illustrate the action of the radio frequency, we calculate the potential energy and the dressed
states for 6Li atoms. For simplicity, we assume a 1D linear magnetic field gradient B(z) ≡ zb.
Figure 1(a) shows the radio frequency coupling and figure 1(b) the dressed states for two
magnetic substates coupled by a single radio frequency component.

If we irradiate several frequency components ωn, labelled in an ascending order by
n = 1, 2, . . . , the problem gets more complicated because every component has its own
dressed state basis. However, for sufficiently low Rabi frequencies and large frequency
separation of the components the dynamics is essentially governed by the component which
is closest to resonance. A good approximation holding for homogeneous magnetic fields is
therefore to consider only one nearly resonant frequency and disregard the others. To handle
the case of magnetic field gradients, we introduce a local frequency, which at a given location
z is the frequency component closest to resonance, ω(z) = ωn(z), where the component
n = n(z) is chosen such that |µBgF B(z) − h̄ωn(z)| is the smallest. In other words, along the
field gradient we switch between different dressed state representations, and in order to make
this switching as smooth as possible, it is done at those points where a blue-detuned frequency
ωn+1 gets closer to resonance than a red-detuned frequency ωn. Figure 2(a) reproduces the
energies locally dressed with the radio frequency field ωn.
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Figure 2. (a) Local dressed states (solid line). The parameters are the same as in figure 1, but with
three frequencies irradiated at ωn = 2π × 2, 4, 8 kHz. The black dots show the locations where
the frequencies are resonant. The dash-dotted line denotes the frequency component ωn, which
is closest to resonance. (b) Corresponding adiabatic potentials calculated with nearly resonant
frequencies only. (c) Dynamic Stark shift corrections from those radio frequency fields which are
not closest to resonance. (d) Adiabatic potentials with the Stark shift corrections of (c).

The adiabatic potentials Vad are now obtained by considering that the couplings are strong
enough to yield Landau–Zener transition probabilities close to unity (see below). Formally,
this is done by using the following procedure:

Vad,±(z) = (−1)n(z)

[
E±(z) ∓ h̄ωn(z)

2

]
∓

n(z)−1∑
k=1

(−1)kh̄ωk. (5)

This is shown in figure 2(b).
The adiabatic potentials in figure 2(b) show small discontinuities at those places where

the frequency components which are nearest to resonance change. This is an artefact due to
our neglecting of all non-resonant components. The error made can be reduced by considering
their combined Stark shifts

Ln(z) ≡
∑
j �=n

h̄2�2

4[µBgF B(z) − h̄ωj (z)]
(6)

in the diagonal components of the Hamiltonian

Hω(z) = Hωn
(z) + Ln(z)

(−1 0
0 1

)
. (7)

The corrected eigenfrequencies are thus

E±(z) = ± 1
2

√
h̄2�2 + [µBgF B(z) − h̄ω + 2Ln(z)]2. (8)

Figure 2(c) visualizes the Stark shifts produced by those frequency components which are
not the closest to resonance. Recalculating the adiabatic potentials (5) with the corrected
eigenfrequencies, we obtain potentials without discontinuities as shown in figure 2(d).

A major concern is the dependence of the coupling strength on the relative orientation
of the radio frequency polarization and the magnetic field. Any variation of the field vector
orientation over the region, where the atoms are trapped, introduces a position dependence of
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Figure 3. (a) 2D quadrupolar magnetic field with gradients bz = 200 G cm−1 and bx =
140 G cm−1. (b) Corresponding adiabatic potentials for the 6Li two-level system F = 1

2 . The
Rabi and radio frequencies are � = 2π × 500 Hz and ωn = 2π × 2, 4, 7 kHz, respectively.
(c) Adiabatic potentials for a system with five Zeeman substates, F = 2. The g-factor is set to
gF = 1

2 , as is the case for the 7Li ground state 2S1/2. The Rabi and radio frequencies are as in (b).
(d) Adiabatic potentials for a frequency comb and the 6Li two-level system. In this case, the Rabi
frequency is chosen to be � = 2π × 400 Hz.

the Rabi frequency. This problem can be avoided by choosing a sufficiently large magnetic
offset field, which defines a spatially invariant quantization axis, and by arranging for an
orthogonal polarization vector. On the other hand, this feature may be technically exploited
as an additional handle for shaping the adiabatic potentials [11].

The above procedure can easily be extended to an arbitrary number of frequency
components, to higher dimensional magnetic field shapes B(r), or to multilevel systems
F > 1

2 . Figures 3(a) and (b) visualize the case of a two-dimensional quadrupolar magnetic

field |B(x, z)| =
√

(z∇zB)2 + (x∇xB)2 with three frequencies irradiated. Figure 3(c) shows
the adiabatic potentials for five Zeeman substates, as in the case of the 7Li ground state
hyperfine level F = 2. Finally, figure 3(d) represents the adiabatic potentials for the case of a
frequency comb ωn = 2π × (3 + 1.5n) kHz. Note that gravity is easily taken into account by
calculating the resonant frequencies as explained above and supplementing the Hamiltonian
(7) with the potential energy Epot = mgz.

3. Radio frequency lattices

We have seen above that by irradiating a frequency comb we obtain a periodic potential
(cf figure 3(d)). The question arises how small the lattice constant can be made. The
periodicity depends on the spacing of the frequency components and on the magnetic field
gradient. The grating is characterized by the lattice constant

d = 2h̄(ωn+1 − ωn)

µBgF b
, (9)

and the potential modulation depth

Vad = h̄

(
ωn+1 − ωn

2
− �

)
. (10)
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Figure 4. The shaded area shows the adiabatic regime for � and d with a field gradient of b =
200 G cm−1. The zone on the left of the solid line corresponds to gratings shallower than one
recoil energy. The dash-dotted line delimits the interband tunnelling regime from the adiabatic
regime (hatched area) as explained in the text.

(This figure is in colour only in the electronic version)

To obtain small lattice constant, we chose large gradients. For the following, we set the
premise that the maximum feasible gradient is b = 200 G cm−1, which can be achieved with
current technologies over reasonably large spatial ranges.

A typical experiment with gratings consists in Bragg scattering moving atoms. Atoms
with a de Broglie wavelength which matches the lattice periodicity are Bragg reflected. The
corresponding atomic velocity is

v = h

md
. (11)

The adiabaticity criterion sets now an upper limit for the velocity quantified by the probability
for Landau–Zener transitions, PLZ = 1 − e−h�2/∂t [µBgF B(z)] with z = vt . The atoms follow
the adiabatic potentials if PLZ → 1. This implies h�2 � µBgF vb. Consequently, in order
to ensure Landau–Zener transitions for velocities as high as the Bragg velocity, the frequency
comb spacing and the Rabi frequency should be chosen such that

m�2d � µBgF b. (12)

The shaded zone in figure 4 depicts the adiabatic regime.
The interplay of the parameters � and d also governs the potential modulation depth

Vad through equations (9) and (10). This relationship may be illustrated by estimating the
smallest lattice constant for which the lattice potential is still deeper than one recoil energy,
Er = h2/8md2, as a function of �. The solid line in figure 4 reproduces the curve d = d(�)

for which Vad = Er. We find that for a Rabi frequency of 3 kHz the lattice constant must
exceed d ≈ 0.7 µm.

The lattice constant can be reduced using larger gradients. Lattice structures on a length
scale of a few 100 nm, which are certainly feasible, could be of interest for the generation
of disordered potentials with the aim of studying atomic Bose and Anderson glasses [13].
The most interesting regime, where the length scale of the disorder is smaller than the
healing length of a Bose–Einstein condensate, is difficult to reach with optical speckle patterns
[14, 15]. In contrast, the regime is quite accessible to radio frequency lattices.

3.1. Moving gratings

We now want to produce an adiabatic grating which propagates in a constant magnetic field
gradient. This necessitates a time-dependent frequency comb, ωn(t). After a time tn the
frequency drift has covered the separation of the frequency components ωn+1(tn) = ωn(0),
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Figure 5. (a) Overall Fourier transform of the signal of four radio frequency components linearly
scanned across a range corresponding to their frequency splitting. (b) Stepwise Fourier transform
of the same signal. (c) Time evolution of the corresponding adiabatic potentials. The gradient is
again b = 200 G cm−1. Additionally, a magnetic offset field of B0 = 0.1 G has been applied to
avoid the Majorana spin flip transition at the centre of the quadrupole trap. The Rabi frequency
is � = 2π × 15 kHz. (d) Stepwise Fourier transform of a signal consisting of three frequency
components, the amplitudes and phases of which vary differently in time.

and we recover the same spectrum. The frequency separation determines the lattice constant
through equation (9). The time tn rules the propagation velocity of the lattice via

v = d/tn. (13)

Therefore, we may repeat the ramp

ωn(t) = ωn(0) + (ωn+1 − ωn)t
−1
n (t mod tn). (14)

The Fourier transform of the instantaneous power spectrum of the radio frequency, P(ω, t) =∑
n δ[ω − ωn(t)], is

U(τ, t) = U0

∑
n

sin[ωn(t)τ ]. (15)

The inverse Fourier transform of the function U(t, t), shown in figure 5(a), is the envelope
of the frequency comb time evolution. To retrieve the instantaneous spectrum, we build the
inverse Fourier transforms over consecutive time intervals as shown in figure 5(b).

In the example of figure 5, the chosen time base is tn = 2 ms. In a magnetic field gradient
b = 200 G cm−1, with a frequency comb chosen as ωn(0) = 2πn × 100 kHz, the lattice
constant is d = 1.7 µm. Thus the propagation velocity is v = 1.8 mm s−1.

Multifrequency signals can be generated by a variety of techniques. The most convenient
is probably to use arbitrary waveform generators programmed with the Fourier transform of
the desired frequency spectrum. In order to generate moving radio frequency lattices, a whole
period tn has to be programmed. In our example, for radio frequencies up to ωn ≈ 2π×500 kHz
the number of oscillations within tn is 1000. If we count at least 8 points to resolve an
oscillation, we need to programme waveforms with 8000 points, which is feasible with state-
of-the-art arbitrary waveform generators.
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3.2. Bragg reflection and Bloch oscillations

Atoms are Bragg reflected at a lattice if their de Broglie wavelength is commensurable
with the lattice constant, i.e., their velocity is given by equation (11). Alternatively, for
resting atoms to be accelerated by a moving grating, the propagation velocity of the grating,
equation (13), must coincide with the Bragg velocity. For the above parameters, we expect
vbrg = 1.2 mm s−1. For our example, in order to obtain an interaction between the atoms and
the lattice, we may tune the propagation velocity by varying the time period tn or modifying
the lattice constant d. In contrast to the propagation velocity, which increases with the lattice
constant, the resonant Bragg velocity is inversely proportional to it. Hence, there can only be
one field gradient satisfying the Bragg condition. Equating the two velocities, v = vbrg, we
derive

bbrg =
√

2h̄m

πtn

ωn+1 − ωn

µBgF

, (16)

which gives bbrg ≈ 210 G cm−1 for the present conditions.
Thus for anisotropic traps, for which the secular frequencies differ for different axes, a

pronounced directional selectivity of the atomic interaction with the moving lattice can be
expected. The directions in which atoms are accelerated are only those where the Bragg
condition is satisfied.

Figure 5(c) shows a time series of the adiabatic potentials produced by the frequency
comb specified above. When the frequency components are ramped, the potential wells on
both sides of the trap origin migrate in opposite directions. This feature can be useful for
realizing atom interferometers.

The technique is obviously not limited to uniform gratings propagating with constant
speed. As an example that arbitrary time signals may be programmed figure 5(d) shows the
sequential Fourier transform of a waveform consistent of three frequency components, which
are differently modulated in amplitude and phase.

A powerful tool to probe and characterize atom optical gratings is Bloch oscillations.
This phenomenon occurs when a constant force, F = ma, is applied to cold atoms interacting
with the grating. The force can be gravity, or it can be generated by an accelerated motion
of the grating [16, 17]. For Bloch oscillations to occur in the lowest band, an adiabaticity
criterion similar to the Landau–Zener criterion (12) follows from the Bloch model. Interband
tunnelling at the edge of a Brillouin zone is prevented if the rate of change of potential energy
due to acceleration is smaller than the size Vad of the band gap, i.e., V 2

ad � d
dt

(h̄maz)|z=d/2.
This leads immediately to

π

4

V 2
ad

Er
� mad. (17)

Inserting the recoil energy and expressions (9) and (10), we obtain an inequality for � and d.
This inequality is depicted in figure 4 as the hatched zone below the dash-dotted curve for the
case that the acceleration is due to gravity a = 9.81 m s−1.

4. Potential shaping

Another application of adiabatic potentials is the realization of non-harmonic potentials via
the irradiation of appropriate radio frequencies and microwaves. Two-dimensional trapping
potentials based on this principle have recently been proposed [8, 9]. The possibility to
selectively influence the confinement strength of atoms trapped in specific Zeeman substates
or being of different species is particularly useful for studies of their interaction.



Highly versatile atomic micro traps 1063

−200 0 200

−4

−2

0

2

4

∆ 
(M

H
z)

z (µm)

(a) |2,2〉

|2,0〉

|1, −1〉

−200 0 200

−4

−2

0

2

4

6.
8 

G
H

z

z (µm)

(b)

Figure 6. (a) The Hyperfine and Zeeman structure of the 87Rb ground state. States |2, 0〉 and
|1, −1〉 are coupled by a microwave at 6.8 GHz. The Rabi frequency is � = 2π × 600 kHz, the
gradient is b = 200 G cm−1, and we assume a magnetic offset field of B0 = 1 G. The microwave
is tuned 2 MHz to the red of the field-free |1, −1〉 ↔ |2, 0〉 resonance. (b) Dressed states give rise
to two adiabatic potentials. The upper potential is flat around the centre; the lower one has a depth
of about 50 µK for the chosen set of parameters.

An example where this plays a role is a mixture of the high-field seeking states 6Li
∣∣ 3

2 , 3
2

〉
and 87Rb |2, 2〉 [18]. For this case, sympathetic cooling of Li via Rb to very low temperatures
(such as those needed for reaching the critical temperature for BCS-pairing) requires a sensitive
matching of the respective gas densities. This guarantees that the Li Fermi temperature is
lower than the critical temperature for the Bose–Einstein condensation of Rb 1 and reduces
fermion–hole heating as far as possible [19]. This respective density matching is now possible
by controlling the potentials’ shape via microwave or radio frequencies.

For this example, the following scenario could be used to transfer atoms into a potential
with a flat bottom in which an atomic cloud adopts a nearly homogeneous density distribution.
One starts producing an atomic cloud, e.g., of 87Rb atoms in the |2, 2〉 state. With a properly
designed adiabatic sweep the majority of the atoms can be transferred to |2, 0〉, and a microwave
frequency resonant to the |1,−1〉 state at some distance from the trap centre is irradiated
(cf figure 6(a)).2 The atoms are then trapped in an adiabatic potential with a flat bottom
(cf figure 6(b)). Note that there is a second trapping potential for those |2, 2〉 atoms that were
initially in the centre.

5. Conclusion

To conclude we believe that radio frequency combs in conjunction with magnetic field are
a versatile tool for manipulating the atomic motion on small length scales. The gratings
are very stable and flexible. In fact the lattice constant is only limited by the magnetic
field gradient, which is technically feasible. In our examples gradients of 200 G cm−1 have

1 This improves the spatial overlap of the two clouds, allows for heat capacity matching [20] and avoids component
separation.
2 This is not possible with radio frequency coupling of Zeeman states of the same hyperfine manifold because the
coupling is the same for both species. Furthermore (in the linear Zeeman regime), the radio frequency couples all
Zeeman states of the hyperfine manifold.
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been used, but gradients of several 1000 G cm−1 can certainly be realized in environments
which are compatible with cold atom optics. Potential applications of time- or position-
dependent radio frequency combs may include Bragg velocity filters, Bragg interferometers,
quasi-random potentials with disorder occurring on a very small length scale and other atom
optical elements.

In a variety of cases, such as in two-species experiments, it is important to control the
atomic densities without modifying the magnetic field gradients. As an example, we have
discussed the 6Li–87Rb mixture, where the feature of deforming magnetic trapping potentials
by radio frequency radiation in a controlled manner is crucial in order for sympathetic cooling
to be efficient down to very low temperatures. This approach may thus constitute an alternative
to using bichromatic optical dipole traps suggested in [20].
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